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A SURVEY OF SOME PROBLEMS AND RECENT
RESULTS FOR PARAMETER ESTIMATION AND

OPTIMAL CONTROL IN DELAY AND DISTRIBUTED
PARAMETER SYSTEMS

by

H. T. Banks

ABSTRACT

We survey a number of applications and problems motivating our current

efforts on numerical techniques for parameter estimation in and optimal

control of delay and partial differential equations. We then outline two

different approaches for establishing theoretical convergence results for

estimation algorithms. An application of modal techniques to the investiga-

tion of transport in brain tissue is briefly explained. A sketch of a con-

vergence theory for spline techniques for function space parameter estimation

problems is given. -



§1. Introduction.

In this lecture we shall first present a brief account of several areas

of applications which have motivated our recent efforts, both theoretical and

numerical, on approximation methods for estimation and control of infinite

dimensional systems. We then shall sketch the general theoretical ideas we

have employed to establish convergence results for related iterative schemes.

Finally we return to two of the applications and illustrate the use of these

ideas by explaining in more detail our investigations for these problems. As

we shall make clear, our efforts on many of the problems mentioned below

involve joint endeavors with colleagues and students. In addition to a well-

deserved thank you to Richard Ambrasino, James Crowley, Patti Daniel, Mary

Garrett, Karl Kunisch, and Gary Rosen, we would also like to publicly

acknowledge E. Armstrong (NASA Langley Research Center), R. Ewing and

G. Moeckel (Mobil Research and Development Corp.), P. Kareiva (Brown University),

J. P. Kernevez (Universit de Technologie de Compi gne), W. T. Kyner (University

of New Mexico), and G. A. Rosenberg (V. A. Medical Center, U. N. M. School of

Medicine) for numerous stimulating discussions and suggestions which have

substantially affected the investigations of our group at Brown University.

Our discussions here focus on a general class of systems including

nonlinear delay systems

x(t) f(x,t,x(t),x ,x(t- (t- T + g(t)

(1) x(e) =O(e) , -T < e < o
q (

nonlinear distributed parameter systems

~~i
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a2 u aut2 u -- + q2 a + q 3 u + f(q 6 ,t,x,u)
2d 2 T 36

Du

(2) u(O,x) = q4 ,(x) , (O,x) = q5i(x)

u(t,O) = gl(t) , u(tl) = g2 (t)

of hyperbolic type, and parabolic systems of the form

at x (p (x)Tx) + q f(q4 ,t,x,u)

(3) u(O,x) = q3c (x)

Fall a1 2 1 3 a 1 4

g

D u u )T (gl ( W )

Su(t,0), - (t,0), u(t,l), --,(t,lI) = i
,X X (g2(tW

a21 22 a2 3 a 2 4

A typical estimation problem consists of the inverse problem of finding the

vector parameter q , given observations {&.} of the state (or components
J

of the state) corresponding to known inputs g or gi A typical control

problem (for fixed parameter values q ) might consist of minimizing a given

payoff or cost functional subject to (1), (2), or (3), over some admissibl

class of control functions g or gi

LI1
- C-'
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§2. Motivating Examples

I. The LN2 Wind Tunnel

The liquid nitrogen wind tunnel (National Transonic Facilitv) currPnt'Y

being constructed at NASA Langley Researcl Center is a cryo~pnic wind tunnel

for which the cost of liquid nitrogen alone is estimated at $6.5 x 106 per

year of operation. The tunnel represents the latest advances in technology

in that essentially independent control of Mach number and Reynolds number

(- temperature) is an anticipated feature. Schematically, the tunnel can be

represented as in Figure 1.

FAN

SECTION

GASEOUS LIQUID
NITROGREN <- o NITROGEN
VENT INJECTION

TEST

SECTION

Figure 1

The basic physical model relating states such as Reynolds no., pressure,

and Mach no. to controls such as LN2 input, GN2 bleed, and fan operation

involves a formidable set of partial differential equations (Navier-Stokes) to

describe fluid flow in the tunnel and test chamber. This model has, not

surprisingly, proved to be very unwieldy computationally and probably cannot

be used directly in design of sophisticated control laws. (Both open loop and

feedback controllers are needed for efficient operation of the tunnel--and
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this is clearly a desirable goal. Given the current estimates of costs of

operation, the funds from only a 1 or 2% savings in operation costs would

support a nontrivial amount of related research by scientists and engireers!!)

In view of the schematic in Figure 1, it is not surprising that

engineers (e.g. see [18]) have proposed lumped parameter models (the variables

representing values of states and controllers at variou:s discrete locations

in the tunnel) with transport delays to represent flow times in sections of

the tunnel. A specific example is the model (see [ 1 ]) for the Mach no. (in

the test chamber) lcop which to first order is controlled by the fan guide

vane angle setting (in the fan section)--i.e. M(t) - GVA(t- T) where 7

represents a transport time from the fan section to t5', test section.

In addition to the design of both open loop and closed loop controllers,

parameter estimation techniques will be useful once data from the completed
1

tunnel is available (current investigations involve use of data from a 3

meter scale model of the tunnel).

II. Enzyme Tubular Reactors

Column reactors in which enzyme mediated chemical reactions take place

to produce a desirable product (or products) from a given substrate (or

substrates) are of some importance because of che numerous potential applica-

tions in commercial production (e.g., purification of fruit juices, proteolytic

treatment of beer, synthesis of antibiotics and steroids). Research on the

operation of such reactors has been carried out in the laboratory of D. Thomas

at Universit de Technologie de Compi~gne for several years. Mathematical

models for these processes (which involve reaction, diffusion, and convective

transport) range from simple plug-flow (PF) models to full-fledged diffusion-

tconvct io-react iol (1) models [16], [19]. In an attempt to formulate

models with the desirable accuracy exhibited by the DCR models (which are



computationally expensive and unwieldy to use, especially on small computers)

but which approach the simplicity of the PF models (which in these applications

prove too inaccurate in their representation of qualitative phenomena to be of

practical use), J. P. Kernevez and his colleagues have proposed lumped parameter

models with delays. In these models there are several delays representing

convective transport and a number of diffusive transport mechanisms. One

version of such models, which are nonlinear due to certain reaction velocity

terms, is discussed in some detail by P. Daniel in [12] where additional

references may also be found. To investigate the accuracy and potential

usefulness of these models, efficient methods for parameter estimation

(unknown parameters include several delays as well as kinetic constants) and

control techniques for nonlinear delay systems are essential.

III. Gas and Oil Exploration and Recovery

a) Reservoir Engineering Problems

The importance of inverse or parameter estimation problems in the as and

oil industry is rather well-documented. One class of problems [8 ]. [1 ]

[26] involves use of the flow equations in a porous medium (a reservoir or

oil/gas field) to determine the field porosity (the ratio of pore ":c'ut

to total volume) and field permeability function k . A greatly simplified

model would be based on an equation (derived from conservation of mass and

Darcy's law--see [11], [20]) for the pressure p = p(t,x,y) in a vertical'v

homogeneous field of depth h , say

Ich -  (hk 3 +
at ax 1. x

where i = fluid viscosity, c = fluid compressibility, and f is a zeneral

sink/source term. The field usually contains a n mber of wells (for nroduction
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or observation or both) and a typical problem is to eptimate ' and k or,

alternatively, the total pore volume h , from observations of p at

the well heads.

More realistic models inv lve - vernl miscIble " iJ l d

coupled set of partial differential equations [!4], ,tw Hik, -,mdnri. !erse

problem is similar, only much more complicated, of course.

b) Seismic Exploration

A second class of inverse problems concerns determination of the elastic

properties of an inhomogeneous medium via surface observations after perturbing

"shocks" have produced waves in the medium. Models usually involve the

equations of elasticity [2 1, [17]; for example, in the 1-dimensional Troblem

one might consider

a u a D

where p is the mass density and E = A + 2 i for compressional or P-waves,

E = i. for shear or S-waves with X,v the Lamb parameters. The boundary

conditions at z = 0 (here z is the vertical distance from the surface)

include excitation or perturbation of the medium (often this source input

itself is a quantity to be "identified"). From observations at the surface

z - 0 (these observations usuaIIyinvolve the unknown source input and a

au
velocity term t for particle displacement), one wishes to determine the

unknown functions P and E and, in addition, the source term if it is

unknown.

IV. Large Space Structures

Another class of control and identification problems for which the models

are based on the equations for elastic structures are those dealing with



large space antennas. One such antenna that is currently being developed by

NASA is the Maypole Hoop/Column antenna which is depicted in Figure 2.

FEED ASSE."U LY

r ANTENNA SURFAC

HOOP

CONTROL STRTNCRS

Figure 2

This antenna, which when fully deployed somewhat resembles an inverted

umbrella (100 m. in diameter), consists of a membraneous surface of gold-

plated molybdenum reflective mesh, a collapsible hoop or ring on which th

surface is stretched, and a telescoping column to which the antenna surface

is anchored and on which feed assemblies are mounted. The antenna in col-

lapsed configuration (similar to the popular "travel umbrellas" that collapse

to fit into a briefcase or small suitcase) is to be transported into space

in the space shuttle; it is then deployed for use as a communication antenna.

The antenna surface itself is flexible and its shape (and hence focusing

properties) can be changed via control stringers attached to 48 equally

spaced radial teflon coated graphite "cords" ( 4 control strinerFi pcr

radial cord or "gore" edge). In addition to the dynamic identificatio incT
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control problems associated with initial deployment of the Maypole Hocp/Column,

it is anticipated that after long periods of operation, the reflector surface

will (due to changes in elastic properties and forces) require adjustment.

Thus a static problem of interest consists of the following: Determine fron

observations (through sensing devices placed on the gore edges on the surface)

the present configuration of the antenna surface and then effect the desired

configuration or "displacement" through adjustment of the control stringers.

A typical problem then might involve a partial differential equation for

the displacement of a circular membrane or thin plate, say P(D,q)u = f

where D represents spatial differential operators, q represents elastic

parameters to be estimated, and f entails applied forces. A simple example

might be

a ( u E3u-r r) +De r (-O) = f

where E = E(r,e)

V. Dispersion Models in Ecology

An important problem to population ecologists [21], [221 concerns the

movement of insects (or, more generally, herbivores) through vegetation

patches. Outbreaks or cyclical population explosions of some insects are

observed and it is believed that the nature of the transport mechanisms for

the insects affect the occurrence (or lack thereof) of outbreaks and their

magnitude and periodicity. Typical equations to describe movement of the

insects involve both diffusive and advective (convective) terms, e.g. for

1-dimensional models

a-(VN) (D A + f (N)

.... .... . . . . ax i m 9.. 9x'". .... . . . .. I ' ' . .. . ... .. - 1
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in addition to the usual sink/source terms f Depending on the species

involved, it is generally expected that D and/or V can depend on N , the

population level, and/or x , the spatial variable. The diffusion coefficient

D and the co1vCctiv, velocity V may alternatively, or, in additien, dene-3 or

temperature or time (e.g. as in seasonal migration of pests).

There are numerous estimation and control problems of importance in the

context of ecological investigations. Typically one wishes to determine the

coefficient functions D and V from observations of N and once this is

done, one might wish to estimate the optimal vegetation density in a patch

in order to hold population levels in the patch to a minimum, or at least

below some given level.

VI. Transport Models in Physiology

In physiology a great deal of research is devoted to questions concernin

transport mechanisms such as simple (passive) diffusion, bulk flow or convective

transport, facilitated diffusion, and active transport. An example is the

effort [9 ], [10], [231, [24] devoted in recent years to the controversy

involving bulk flow vs. molecular diffusion of brain interstitial fluid in

gray and white matter. The mathematical models again are based on the

convection-diffusion equation

au + V au = 2u
- V =D-

for the concentration u of a labeled substance such as sucrose in brain

tissue. From experimental data (for u at various times and locations in the

tissue samples) one seeks to estimate values for V and D in gray and white

matter and contrast the transport properties of each type of tissue. We shall,

in a subsequent section of this presentation, discuss in same detail an
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application to these transport problems of some of the methods that are the

focus of attention in this lecture.



§3. Theoretical Foundations

We turn now to a discussion of the theoretical techniques that one can

employ to establish convergence results for certain approximation schemes for

nonlinear systems such as (1), (2) or (3). For the sake of brevity we shall

restrict our considerations to parameter estimation problems. A discussion

of the use of the ideas presented here in control problems can be found in

[121 in the case of nonlinear delay systems while the cose of distributed

parameter control problems is considered briefly in [ 6 ].

For the purposes of illustration we shall use a least squares formulatien

(for a discussion of maximum likelihood estimator ideas, see [ 3 1 and the

references therein) of the parameter estimation problem. In particular, one

seeks to minimize

J(q) = 2 lY(t i;q )  - il

i=l

over a given set, Q of admissible parameters. Here i is an observation

for the output t - y(t;q) at t. with y(t) = Cx(t) in the case of (1),

y(t)= col(Cu(t,x1) , . ..,Cu (t ,x ),u t (t,x ) , .. .,Du t (t,x p )) in the case of (2),

and y(t) = col(Cu(t,xl),...,Cu(t,x p)) in the case of (3), where C and

are matrix operators of appropriate dimension and rank.

Our approach entails rewriting (1), (2), or (3) as an abstract equation

z(t) =A(q)z(t) + G(t)

(4)

z(O) = 0

in an appropriately chosen Hilbert space Z . The operator A may be linear

or nonlinear and depends on the unknown parameters q . We reformulate the

estimation problems as ones of minimizing
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J(q) 2 1 .~~i~) - i

i=l

where y(t;q) = r(z(t;q)) is an appropriately defined output.

We take a classical Ritz-Galerkin type approach to reducing these infinite-

dimensional state space problems to a sequence of approximating finite dinen-

sional state space problems that are readily solved numerically. For a given

N N N
sequence Z of "subspaces" of Z with "projections" P N Z - ZN , we

minimize

N m (Nt 2
J (q) r (z(ti;q))  1

N

over Q wh!ert, z is the solution of an approximating system

N(t) = A N(q)z N(t) + P NG(t)

(5)

zN (N) 

N 
N z0 .

In the methods discussed here we always take A N(q) = P NA(q)PN and obtain

a state convergence z N(t;q) - z(t;q) . The ultimate goal, of course, is to

insure convergence of some sequence {qN} of solutions of approximating

estimation problems involving (5) to a solution q of the problems involving

(4). This objective can be attained in the cases of the 'd;'I" and "spline"

schemes we have developed and tested numerically in [4 ], [5 ], [6 , 7 3,

[121.

To date we have employed two different theories to establish state and

parameter convergence. For distributed parameter systems, both modal [63 and

spline [71 schemes have been investigated using an abstract semigroup formulation

and Trotter-Kato type theorems. Briefly, one establishes that the linear

operators A and AN  (we suppress the q dependence here) satisfy a

i
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uniform (in q and N ) dissipativeness condition and generate CO-semigroups

T(t) and T N(t) respectively. Then treating the nonlinearities

G(a) = F(q,a,z(a)) ( F is defined in an appropriate manner using f from

(2) or (3)) as perturbations, one considers in place of (4) and (5) the implicit

equations

= ~~~(t -)Fqz d

(6) z(t) - T(t)z0 + J0

and

N N T N PNo Nt N
(7) z (t) = T(Pz0+ foTN(t-OpNF(q,c,z (O))d'

The basic tool then is a Trotter-Kato type result which, under the conditions:

(8i) IT N(t) I < MeWt  for some M and w independent of N

there exists a set D C Dom(A) , D dense in Z
(8ii)

such that (X - A)D is dense in Z for some X0 > 0

(8iii) JANz- AzJ - 0 for z E D

guarantees the convergence

(8iv) TN (t)z - T(t)z for z E Z , uniformly in t

The convergence in (8iv), along with (6), (7) and P N I strongly, can

be used to argue state convergence z () - z(t) . This in turn can be used to

establish a desired parameter convergence (for the rather technical details--

which are nontrivial when the full dependence of the operators, projections.

semigroups and, in some cases, the subspaces, on the unknown parameters q is
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taken into account--one should consult (6 ] and [7 ).

A somewhat different approach to spline methods for delay systems (') has

been taken in (4], 51, [12) where the nonlinearity f is treated directly A

as part of a nonlinear operator A = A(t) (which is now possibly time

dependent). In this case one uses the implicit equations

z(t) = z0 + { {A(a)z(a) + G(a)7 1a

zt) = PNz0 + {AN(a)zN(a) + PSG(a)}do

in place of (4) and (5). Under reasonable conditions on f one can establish

dissipative type inequalities

<<A (o)z - A (U)w, z - w>> < W(C)<<z - w, z - w>>

where << , >> is a specially defined inner product on Z . With some

elementary analysis and u-e of a Gronwall inequality, one then obtains estimates

for jzN(t) - z(t)j in terms of integrals of {A N(a) - A(o)}z(a)

Desired convergence results then follow from convergence properties of A

Again the technical details become quite involved when one treats general non-

linear delay systems with multiple unknown delays. These can be found in

5 1, (12].

We remark that one need not have ZN  a subspace of Z in carrying out

the above theories. Indeed in both cases (delay systems with unknown delays,

distributed parameter systems with unknown coefficients) outlined above, one

N N
finds that the appropriate P , Z , and Z all depend on the unknown parameters

q (through the domain of the function space in the case of unknown delays and

through the inner product for Z and ZN  in the case of some distributed

parameter examples as well as the unknown delays problems) which of course
i

I I



vary as one iterates through the sequence of approximating problems (i.e., on

N ). This feature results in interesting difficulties from both a conceptual

and computational viewpoint.

+ i K .. . . . . .. .. .. .. . . . .i = _ ,+. M I +. + . . . . ,+ * .. + + . __ . - ,. . + m +ag
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§4. An Application to Transport in Brain Tissue

We return to the example VI of §2 involving the transport of labeled

sucrose in gray and white matter. A complete description of the experimental

procedures and the questions being investigated can be found in 24J. Briefly,

cats are anesthetized and experiments of either 1, 2, or 4 hours duration are

carried out. Labeled sucrose is perfused into the lateral ventricle. At the

end of the perfusion period, the animals are sacrificed and their brains are

removed and frozen. Well-stained areas of gray and white matter perpendicular

to the ventricular surface (along the x-axis in our notation below) are sec-

tioned and analyzed. This yields data corresponding to a fixed time t. for
1

a maximum of 4 spatial locations x j = 1,...,4 , in gray matter and 8

spatial locations x. in white matter. From this data {G(ti,x.)} for the
31 j

concentration u , one wishes to compare transport in gray matter with that in

white matter. The primary questions pertain to transport via molecular

diffusion alone vs. transport via diffusion and bulk (convective) flow. In

particular, the mathematical problems reduce to those of estimating D, V, and

C in

au U 32u2

u(t,O) = Co

In the early experimental work, data for only one time ti  (1, 2, or 4 hours)

and for anywhere from 4 to 8 spatial locations x were available. A

substantial concern is whether one can develop accurate methods for estimation

of the three parameters in question from such limited data.

We have successfully applied the modal methods of Example 4.4 of [ 6 3 to

investigate these problems. We first summarize briefly the pertinent ideas

behind the methods. For the purpose of illustration, consider the example

I
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ut = qUxx + q 2Ux

u(t,O) = u(tl) = 0

u(Ox) = ¢(x)

which can be reformulated in the form (4) in Z = L2(0,1) by choosing

A(q) = q1D
2 + q2D (here D is the differential operator in L 2(0,1) ) with

2 1Dom(A(q))= H ri H0 It can be argued that A(q) is uniformly maximal

dissipative (although it is not self-adjoint). For the development of modal

approximation schemes, general spectral results given in [13] can be employed.

It can be seen that A(q) is a relatively bounded perturbation of a discrete

spectral operator and is itself a discrete spectral operator with a resolution

of identity and associated eigenmanifolds and projections. The eigenvalues

are found to be X (q) = -j 2 - q2 /2q, with associated eigenfunctions

i (q) = exp{-q 2x/2qI}sin Jirx . The natural modes or eigenfunctions form a

complete (but not orthogonal) set i[t Z = 12(0,1) . Howevcr i choice of

Z = span{ I (q),.... @N(q)} , while desirable theoretically, is not useful in

parameter estimation algorithms since the basis elements are then dependent

upon the unknown parameters (and thus change with each new estimate of the

q's ). One can use instead the near-modal functions 0.(x) = /7 sin j-x :.nd
3

take ZN = spn' 1 .. , AN~ iN pN pNN
a N span , ... oN

} with, of course, A = P AP where P is t'e

canonical projection of Z onto ZN

Convergence can be argued using the Trotter-Kato formulation of (8i) - (Siv)

above. The stability condition (81) follows immediately from the uniform

dissipativeness. Choosing V - U Z (q) , where q is a limit of the sequence

-N N=
of estimates q , the spectral results yield (811) trivially while one must

work somewhat more to establish (8ii).

With regard to implementation, the scheme offers some nice computational

features since the matrix realizations of the operators AN (q) are given by



-18-

N=
(q)]j i # J , i + j even,

2jq 2 [ 2 - J , i + j odd.
21 -_j2

Turning to our investigation of these methods for possible use in the

brain transport questions, we first tested the methods with an example for

which the solution was "known". (J. Crowley and M. Garrett carried out the

computations for this problem. J. Saltzman supplied a "known" solution

technique involving an infinite series which was used to generate "data"

corresponding to fixed parameter values in the equation. This technique is

totally unrelated to the methods we were testing.) The example used was

ut - q 2Ux qlUxx

u(t,O) = q3 , u(t,l) = 0

u(O,x) = x) ,

2
where O(x) = 0 x + a1x + a2 is a quadratic satisfying 6(0) = I , d(l) 0

1 1and max 0 = 0( ) . "Data" were generated corresponding to true values

q* = .3 , q* = 1.75 , and q* = 1.0 . A number of numerical trials with .he

above described "modal" scheme were conducted in which the inverse problem fo1.

varying amounts of "data" was "solved." We summarize briefly some of our

findings. In the examples presented here, the notation I = k , J = p in an

example indicates that the data set for this test consisted of values

u(tixj) ,i l,...,k, j = l,...,p (i.e., k x p "observations" were employed

in the inverse problem).

Example 1: It was assumed that q3 was known and an attempt to fit the data

was made by searching for qI and q2 Initial guesses (for each value of N
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N,0 N,0

tried) were ql = 1.0 , q2 = 0.0 . The "converged" values (corresponding

to N = 8 or 16 in this and all the examples presented here) were:

I = 1, J = 3: ql = 1.82 q2 .83

I = 2, J = 3: q= .2979 q = 1.7557

Example 2: This example was exactly the same as Example 1 except initial

N,0 N,0
guesses ql = .75 , q2 1.0 (somewhat closer to the "true" values thar.

those used in Ex. 1) were used. For I = 1, J = 3 , the results were

.3009 , q2 = 1.7529 , quite acceptable in this case.

Example 3: We investigated the effect of using increasingly more spatial

points in our data grid (i.e., I 1 with J = 4,5,6 ). For initial guesses

qN,0 = .8 , q ,O 9 , increasingly better estimates were obtained as the

number of spatial grid points increased. We obtained:

= 1, J - 3: q, = .6115 q2 = 1.4903

I 1, J - 4: qI = .3018 2 1.7468

I = 1, J = 5: ql I .2978 q2 = 1.7492

1 1, J - 6: q = .2984 q2 = 1.7493

It is clear that 4 points in the spatial grid yields an adequate amount of

data for this example.

Example 4: In this case we wished to estimate q1 ,q2 and the boundary con-
NN,0

centration q Initial guesses were q1 , = .8, q, 0  .9, q3N - .5

The converged values were:
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I = 1, J = 6: q = .2990 l.6PS3 1.03562 . 3

I = 2, J = 6: q= .2997 q 1.7469 q 1.0012

Example 5: As a final test we modified the initial function t used in the

above examples to (0) = I , (x) = 0 for x # 0 . This represents the tvne

problem (one with a discontinuity in the boundary-initial data) that one

encounters when using the actual data collected in the experiments with cats

described above. Again the results obtained were encouraging. With I = 2

J = 6 and initial guesses q, .8 , 2,0 = .9 , converged values of

= .3019 q2 1.7635 were found with a residual sum. of squares of

4.3 x 10
- 3

In summary, the numerical tests reveal that it is probably unreasonable

to expect to solve with the "modal" methods the inverse problems for = I

J = 3 in most cases. However, problems with I = 2 , J = 3 correspond to a

reasonable number of spatial observations for the method in some cases. (By

changing labels during the perfusion period, Rosenberg, Kyner, and colleagues

are now collecting data with two time grid points.) For data from white matter

(where J - 6 is feasible), the methods should prove useful in estimating

D , V , and C in the transport models.

We have, in fact, used the methods with actual data sets (I = 1, J = S)

for white matter supplied by Kyner and his associates. The . .m;i'" methods

appear to consistently perform in an acceptable manner. Typical values obtained

in solving the inverse problems are D = 2.7 x 10-6 cm2/sec., V = -5.99 ;m/min.,

CO = 128.5 , values that are consistent with expectations based on values

obtained by Kyner and associates using other techniques.

We anticipate that extensions of these methods (or perhaps the spline

t- L . .., .. . . . .. . . . ... . . .. - - ' - I l i 11 , . .
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methods developed in [7 1) will prove useful in future investigations of the

channeling structure in white matter (in these problemF the velocity ccefficient

V will be spatially dependent as will also, in some cases, the coefficient of

diffusion D ).

-pek
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§5. Estimation of Function Space Parameters

The theory developed in [6 ] and [ 7 ] deals with estimation of parare-crq

in Euclidean space sets. The framework is, however, general enough to allow

one to treat problems in which unknown function space parameters must he

estimated. In this section of our presentation we shall give a brief sketch

of hcw one further develops such a theory. At the same time we shall illuptrate

some of the ideas fundamental to spline methods as opoosed to the "modal"

methods discussed earlier.

In order to demonstrate the ideas we shall consider an equation of the

porous media type (see §2.IIIa)); that is, we consider

(9) ql(x) = -L (q2(x) ) + f

with homogeneous boundary conditions u(t,O) = u(t,l) = 0 . In relating thiq

to the porous media application (then u = pressure), one might consider large

fields for which the boundary terms are either constant or slowly varying in

time. In either case, such nonhomogeneous boundary problcms can be transformed

to problems with homogeneous boundary conditions in a quite standard manner.

With certain smoothness assumptions on ql,q 2 , the operator in equation (9)

can be viewed as a standard Sturm-Liouville operator (i.e. identify

ql - k , q2 - p in the usual notation for the coefficient functions--see (3)

above and p. 40-42 of [ 6]). For our discussions here we shall assume that

q = (ql,q 2 ) is to be chosen from a parameter space Q C L2 (0,1) x L2 (0,1)

satisfying Q C {(ql,q 2 ) E H
2 x H3Iq2 > 0 , 0 < m q < M} . (The smoothness

hypothesized will guarantee certain smoothness properties for the eigenfunctions

to be discussed momentarily.)

We rewrite (9) as an equation

(10) z(t) = A(q)z(t) + F(q,f)

.... ..
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in the state space Z = X(q) = L2 (0,1) where we take as inner product

<41P q 0 1 .q (Here the spaces do depend on the unknown parameters, a

complicating possibility we mentioned earlier.) The operators in (10) are

given by F f and A(q),p = - D(q2 DM) , where Dom(A(q)) = HO Ho

Simple integration by parts arguments yield <A(q)z,z> < 0 so that A(q)
q

is uniformly dissipative in X(q) . In fact A(q) is maximal dissipative and

generates a C 0-semigroup, and we are thus in a position to consider (6), (7)

and the Trotter-Kato approach to approximation schemes.

To describe the spline methods we need to recall the definition of some

standard cubic spline basis elements. For any positive integer N we let

N
t. = j/N , j = -3,...,N + 3 , and let B. , j = -1,...,N 4- 1 , be the cubic
JJ

N N N
spline that vanishes outside (t-2 t , has value 4 and slope 0 at t. ,

value 1 and slope 3N at t N  and value 1 and slope -3N at tN (See r251
j-i ' lj+l

p. 73--and note that our elements here differ from those of Schultz only by a

multiplicative factor of 24 .)

For our modified basis elements BN  we take the restriction to [0,11 ofJ

the following:

B N = B - 4 2 .
0 0 -1

BN = B N- 4B N
1 0 1

N = ...N-B = . , j 2..N-
j J

N -N __N
B N MB N- 4BN-

N -N __N
BN BN - BN+l

We note that these elements are in Dom(A(q))
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We define our approximation subspaces X N(q) C X(q) by

-~N N} NXN(q) = span{B0 ... ,B N  and let pN(q) be the canonical projection of X(q)N'

N i~. N N N N
onto X (q) , i.e., P q <4,B >B. Finally as usual we take

AN = A N(q) =P N(q)A(q)PN (q)

0 0
Under an assumption that Q is compact in H x H , one can argue in

this case that solutions to the estimation problems for (5) (or (7)) do exist.

We in fact assume that Q is compact in the C x H topology so that we

henceforth assume without loss of generality (possibly by taking a subsequence)

that we have a sequence {q N} of solutions to the estimation problems satisfy-

N - 1
ing q - q in C x H with q e Q.

We briefly indicate the steps to verify (8i) - (8iii) to insure convergence

N Nof the semigroups generated by A (q ) to the semigroup generated by A(q)

(As we have noted before, this is the fundamental convergence result needed

for both state and parameter convergence.) The stability requirement (8i)

follows from

<A N(qN )z,z> N =<A(qN )P N(qN )z, P N(qN)z> N < 0

q q

the inequality being a result of the uniform dissipativeness of A(q )

The operator A(q) has, by the usual spectral results, a CONS of eigen-

functions {T'(q)} . In (8ii) we take

D - U span{C N (q)}
N=

It is then easily seen that the conditions of (8ii) obtain from the completeness

of the T and the relationship (X0 - A(q))T (q) - (X0 - X )% (q)

We finally consider (8ii1) and note that the spaces X(q) , q E Q , are
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all equivalent (recal) 0 < i. < q M ), a fact which plays a fundamental role

in the basic theory developed in [ 6 ]. Indeed we may, in considering any

convergence results, equivalenty se the L2  topology. Thus, to establish

(81ii), it suffices to argue

(ii) A N(q N)'j -
+ A(q)P.

in L2 * From the smoothness assumptions on Q (and hence q ) it is easily
seen that . E H4 . Since V. E Dom(A(q)) we also have T H . Hence,
isfesee tha T i E H ic Tj) in E=1 4

H 0 0
it suffices to fix T ' (q) in H H H0 and argue that (11) holds whenever

N - 1
q - q in C H

Estimates similar to those we need can be found in Theorem 6.13, p. 82 of

[25]. However we cannot use those estimates directly since our projections

pN(qN) (onto XN(qN)) are not the same as the standard projections (of

_N _-N _-N
Thm. 6.13) of L2 onto S(N) = span{B 2 ,Bo,...,BN+l} But using fundamental

ideas similar to those found in [251 (e.g., the Schmidt inequality and estimates

for the appropriate interpolating splines) one can establish:

For l E H4 n H 1
K

1,p PNp I < K I D 41P

N 4

JD~) N P) <K 2 I
N3

ID2 ( - pN $)J 4 ID4 PI

N N

where the norms are the usual L2  norm , PN = P N(q ) as defined earlier, and

the constants K1 ,K2,K3 are independent of N and $

We thus have D 2 N - D 2 in L D2  D N - D in C ,where N = pN

N -N -1 N
Furthermore we know that q, ql in C , q 2 q2  in HI . Since P - I

it thus follows from elementary arguments that

*0-- ., ---.
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AN(qN) =N {(l/ql)Dq2DpN + (qN/q N)D
2 N1

converges in L2  to

22

A(q) = (1/q1 )Dq2DV) + (q2 /q1)D
2

The assumptions on Q made above are not unreasonable for many

applications. We have successfully used these spline methods in computational

packages for function space parameter estimation in models for insect

dispersion (see §2.V). In those applications, the smoothness and compactness

assumptions listed above are satisfied when one formulates the problems and

parameterizes Q in a way that is natural for and consistent with the

experimental and theoretical efforts of population ecologists.

-p -
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